Gaia2 Leaderboard 🏆

Gaia2 is a benchmark designed to measure general agent capabilities. Beyond traditional search and execution tasks, Gaia2 runs asynchronously, requiring agents to handle ambiguities and noise, adapt to dynamic environments, collaborate with other agents, and operate under temporal constraints. As of publication, no system dominates across the task spectrum: stronger reasoning often comes at the cost of efficiency & the ability to complete sensitive tasks in due time.

Gaia2 evaluates agents across the following dimensions: Execution (instruction following, multi-step tool-use), Search (information retrieval), Ambiguity (handling unclear or incomplete instructions), Adaptability (responding to dynamic environment changes), Time (managing temporal constraints and scheduling), Noise (operating effectively despite irrelevant information and random tool failures) and Agent-to-Agent (collaboration and coordination with other agents).

⚠️ All scores on this page are self reported. Associated traces are made available to the open-source community in order to enable deeper study of the tradeoffs between model behavior vs performance on Gaia2.

{
  • "headers": [
    • "Model",
    • "Provider",
    • "Total score (%)",
    • "execution (%)",
    • "search (%)",
    • "ambiguity (%)",
    • "adaptability (%)",
    • "time (%)",
    • "noise (%)",
    • "A2A (%)",
    • "Number of runs",
    • "Submitter",
    • "Submission date"
    ],
  • "data": [
    • [
      • "GPT-5 (high)",
      • "OpenAI",
      • 42.1,
      • "69.2 ± 2.1",
      • "79.6 ± 1.8",
      • "51.9 ± 2.3",
      • "40.4 ± 2.2",
      • " 0.0 ± 0.0",
      • "35.4 ± 2.2",
      • "17.9 ± 1.8",
      • 3,
      • "Meta",
      • "2025-09-09"
      ],
    • [
      • "Claude-4-Sonnet Thinking",
      • "Anthropic",
      • 37.8,
      • "62.1 ± 2.2",
      • "60.6 ± 2.2",
      • "27.3 ± 2.0",
      • "42.1 ± 2.3",
      • " 8.5 ± 1.3",
      • "31.2 ± 2.1",
      • "32.5 ± 2.1",
      • 3,
      • "Meta",
      • "2025-09-29"
      ],
    • [
      • "Claude-4-Sonnet",
      • "Anthropic",
      • 34.8,
      • "57.9 ± 2.3",
      • "59.8 ± 2.2",
      • "24.2 ± 2.0",
      • "38.1 ± 2.2",
      • " 8.1 ± 1.2",
      • "27.7 ± 2.0",
      • "27.9 ± 2.0",
      • 3,
      • "Meta",
      • "2025-09-09"
      ],
    • [
      • "GPT-5 (low)",
      • "OpenAI",
      • 34.6,
      • "52.7 ± 2.3",
      • "64.2 ± 2.2",
      • "39.6 ± 2.2",
      • "30.2 ± 2.1",
      • " 2.3 ± 0.7",
      • "28.3 ± 2.1",
      • "24.6 ± 2.0",
      • 3,
      • "Meta",
      • "2025-09-09"
      ],
    • [
      • "Gemini-2.5-Pro",
      • "Google",
      • 25.8,
      • "39.2 ± 2.2",
      • "57.7 ± 2.3",
      • "18.1 ± 1.8",
      • "17.5 ± 1.7",
      • " 7.3 ± 1.2",
      • "20.4 ± 1.8",
      • "20.4 ± 1.8",
      • 3,
      • "Meta",
      • "2025-09-09"
      ],
    • [
      • "DeepSeek-v3.1 Terminus",
      • "DeepSeek",
      • 23.1,
      • "43.1 ± 3.9",
      • "34.4 ± 3.8",
      • "13.1 ± 2.7",
      • "32.5 ± 3.7",
      • " 1.9 ± 1.1",
      • "17.5 ± 3.0",
      • "19.4 ± 3.1",
      • 3,
      • "Meta",
      • "2025-09-30"
      ],
    • [
      • "DeepSeek-v3.1",
      • "DeepSeek",
      • 21.9,
      • "39.8 ± 2.2",
      • "36.2 ± 2.2",
      • "11.2 ± 1.4",
      • "31.2 ± 2.1",
      • " 1.7 ± 0.6",
      • "17.3 ± 1.7",
      • "16.0 ± 1.7",
      • 3,
      • "Meta",
      • "2025-09-29"
      ],
    • [
      • "Kimi-K2",
      • "Moonshot",
      • 20.1,
      • "34.2 ± 2.2",
      • "36.0 ± 2.2",
      • " 8.3 ± 1.3",
      • "24.0 ± 1.9",
      • " 0.8 ± 0.4",
      • "18.8 ± 1.8",
      • "18.3 ± 1.8",
      • 3,
      • "Meta",
      • "2025-09-09"
      ],
    • [
      • "GPT-5 (minimal)",
      • "OpenAI",
      • 18.2,
      • "31.9 ± 2.1",
      • "26.2 ± 2.0",
      • "20.6 ± 1.8",
      • "19.2 ± 1.8",
      • " 5.2 ± 1.0",
      • "13.1 ± 1.5",
      • "11.5 ± 1.5",
      • 3,
      • "Meta",
      • "2025-09-09"
      ],
    • [
      • "Grok-4",
      • "xAI",
      • 15.7,
      • " 8.8 ± 2.2",
      • "57.5 ± 3.9",
      • " 9.4 ± 2.3",
      • " 4.4 ± 1.6",
      • " 0.0 ± 0.0",
      • "15.6 ± 2.9",
      • "14.4 ± 2.8",
      • 3,
      • "Meta",
      • "2025-09-09"
      ],
    • [
      • "Qwen3-235B-thinking",
      • "Alibaba",
      • 15.7,
      • "28.1 ± 2.1",
      • "36.2 ± 3.8",
      • "10.0 ± 2.4",
      • "16.2 ± 2.9",
      • " 0.0 ± 0.0",
      • " 6.9 ± 2.0",
      • "12.5 ± 2.6",
      • 3,
      • "Meta",
      • "2025-09-29"
      ],
    • [
      • "GPT-OSS 120B (high)",
      • "OpenAI",
      • 13.7,
      • "17.9 ± 0.8",
      • "33.1 ± 2.3",
      • " 8.3 ± 0.2",
      • "10.6 ± 1.3",
      • " 0.6 ± 0.4",
      • "14.6 ± 0.2",
      • "10.6 ± 0.4",
      • 3,
      • "Meta",
      • "2025-09-29"
      ],
    • [
      • "Qwen3-235B",
      • "Alibaba",
      • 11.6,
      • "22.7 ± 1.9",
      • "22.3 ± 1.9",
      • " 6.5 ± 1.1",
      • " 8.1 ± 1.2",
      • " 1.2 ± 0.5",
      • "10.8 ± 1.4",
      • " 9.4 ± 1.3",
      • 3,
      • "Meta",
      • "2025-09-09"
      ],
    • [
      • "GPT-4o",
      • "OpenAI",
      • 7.4,
      • " 8.3 ± 1.3",
      • "17.5 ± 1.7",
      • " 4.4 ± 0.9",
      • " 6.2 ± 1.1",
      • " 5.8 ± 1.1",
      • " 4.6 ± 1.0",
      • " 5.2 ± 1.0",
      • 3,
      • "Meta",
      • "2025-09-09"
      ],
    • [
      • "Llama 4 Maverick",
      • "Meta",
      • 7.4,
      • "13.8 ± 1.6",
      • "14.4 ± 1.6",
      • " 2.1 ± 0.7",
      • " 5.0 ± 1.0",
      • " 1.2 ± 0.5",
      • " 6.2 ± 1.1",
      • " 9.2 ± 1.3",
      • 3,
      • "Meta",
      • "2025-09-09"
      ],
    • [
      • "Llama 3.3 70B Instruct",
      • "Meta",
      • 4.4,
      • " 7.1 ± 1.2",
      • "11.5 ± 1.5",
      • " 1.7 ± 0.6",
      • " 1.9 ± 0.6",
      • " 0.4 ± 0.3",
      • " 3.8 ± 0.9",
      • " 4.6 ± 1.0",
      • 3,
      • "Meta",
      • "2025-09-09"
      ]
    ],
  • "metadata": null
}

🚀 Submit Your Model

You can find a complete setup guide there, but here are some simplified instructions.

First, install Meta's agent research environment in your python environment of choice (uv, conda, virtualenv, ...)

pip install meta-agents-research-environments

Then, run the benchmark for all configurations: adaptability, mini_noise, time, execution, ambiguity, mini_agent2agent, search. Don't forget to upload all results to the hub with the hf_upload kwarg!

are-benchmark gaia2-run \
    --hf meta-agents-research-environments/gaia2 \
    --hf-split validation \
    --hf-config CONFIGURATION \
    --model YOUR_MODEL \
    --provider YOUR_PROVIDER \
    --agent default \
    --max-concurrent-scenarios 2 \
    --scenario-timeout 300 \
    --output-dir ./monitored_test_results \
    --hf-upload YOUR_HUB_DATASET_TO_SAVE_RESULTS

Add all the relevant information about your model in the README!

Finally, log in to this page, complete the informations for logging, and provide the path to your submission dataset.